در برازش الگوي مناسب به فرآيند هاي ايستا با گشتاور مرتبه دوم متناهي ، تابع خود همبستگي نمونه اي وسيله مهم در تشخيص نارسايي و بيان خواص يك فرايند مي باشد. اما در فرايندهاي سنگين دم، روش هاي كلاسيك برازش برپايه تابع خود همبستگي نمونه اي مفيد نمي باشد و آناليز آنها با سري هاي زماني ديگر تفاوت عمده اي دارد . اين نوع سري را توسط فرآندهاي ARMA با نوفه سنگين دم مدل بندي مي كنند و آن را سري زماني پايدار مي نامند ...
توصيفگر فارسي
توزيع آلفا-پايدار متقارن , فرايند ميانگين متحرك , تشخيص مرتبه , تابع هم تفاضلي , تابع مشخصه